Cigarette Smoke Alters the Hematopoietic Stem Cell Niche

نویسندگان

  • Robert W. Siggins
  • Fokhrul Hossain
  • Tayyab Rehman
  • John N. Melvan
  • Ping Zhang
  • David A. Welsh
چکیده

Effects of tobacco smoke on hematologic derangements have received little attention. This study employed a mouse model of cigarette smoke exposure to explore the effects on bone marrow niche function. While lung cancer is the most widely studied consequence of tobacco smoke exposure, other malignancies, including leukemia, are associated with tobacco smoke exposure. Animals received cigarette smoke exposure for 6 h/day, 5 days/week for 9 months. Results reveal that the hematopoietic stem and progenitor cell (HSPC) pool size is reduced by cigarette smoke exposure. We next examined the effect of cigarette smoke exposure on one supporting cell type of the niche, the mesenchymal stromal cells (MSCs). Smoke exposure decreased the number of MSCs. Transplantation of naïve HSPCs into irradiated mice with cigarette smoke exposure yielded fewer numbers of engrafted HSPCs. This result suggests that smoke-exposed mice possess dysfunctional niches, resulting in abnormal hematopoiesis. Co-culture experiments using MSCs isolated from control or cigarette smoke-exposed mice with naïve HSPCs in vitro showed that MSCs from cigarette smoke-exposed mice generated marked expansion of naïve HSPCs. These data show that cigarette smoke exposure decreases in vivo MSC and HSC number and also increases pro-proliferative gene expression by cigarette smoke-exposed MSCs, which may stimulate HSPC expansion. These results of this investigation are clinically relevant to both bone marrow donors with a history of smoking and bone marrow transplant (BMT) recipients with a history of smoking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تاثیر آشیانه‌های جفتی شبیه‌سازی شده با داربست پلی لاکتیک اسید در تکثیر سلول‌های بنیادی خونساز مشتق از بافت جفت انسانی

Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...

متن کامل

Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking.

RATIONALE Adipose-derived stem cells express multiple growth factors that inhibit endothelial cell apoptosis, and demonstrate substantial pulmonary trapping after intravascular delivery. OBJECTIVES We hypothesized that adipose stem cells would ameliorate chronic lung injury associated with endothelial cell apoptosis, such as that occurring in emphysema. METHODS Therapeutic effects of system...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice.

Adult hematopoiesis occurs primarily in the BM space where hematopoietic cells interact with stromal niche cells. Despite this close association, little is known about the specific roles of osteoblastic lineage cells (OBCs) in maintaining hematopoietic stem cells (HSCs), and how conditions affecting bone formation influence HSC function. Here we use a transgenic mouse model with the ColI(2.3) p...

متن کامل

Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation

Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014